$\overline{}$
-
Q
α
Ν
0
۵
ţ,
J
Ф
₹
`
≥
≥
\geq
~
_
0
+
-
모

Title Electrical Machines in Automatics and Robotics	Code 1010331131010320283
Field	Year / Semester
Control Engineering and Robotics	2/3
Specialty	Course
•	core
Hours	Number of credits
Lectures: 3 Classes: - Laboratory: - Projects / seminars: -	6
	Language
	polish

Lecturer:

prof. dr hab. inż. Lech Nowak

Institute of Electrical Engineering and Electronics

60-965 Poznań, ul. Piotrowo 3a

tel. +4861 665 23 88

e-mail: Lech.Nowak@put.poznan.pl

Faculty:

Faculty of Electrical Engineering

ul. Piotrowo 3A 60-965 Poznań

tel. (061) 665-2539, fax. (061) 665-2548

e-mail: office deef@put.poznan.pl

Status of the course in the study program:

Obligatory subject, Faculty of Electrical Engineering, Field: Automatics and Robotics, Full-time first-degree studies.

Assumptions and objectives of the course:

The student should obtain knowledge of the constructions, performances and mathematical models of transformers, induction motors, synchronous motors, commutator machines and electronically commutated motors.

Contents of the course (course description):

Magnetic circuits. Transformers: equivalent circuit, transformer on load, three-phase transformers. Rotating machines-basic concepts: rotating magnetic field, electromotive force, winding factors. Induction machines: basic theory and construction, equivalent circuit, speed-torque curves, squirrel-cage rotor, speed control. Single-phase motors. Synchronous machines: basic theory and construction, phasor diagram, steady state operating characteristics, effect of salient poles, permanent magnet machines, starting of synchronous motors. Direct current commutator machines: basic theory and construction, commutation, armature reaction, motor characteristic, motor speed control. Alternating current commutator motors. Stepper motors. Brushless direct current motors.

Introductory courses and the required pre-knowledge:

Basic knowledge about electrical and magnetic circuits theories.

Courses form and teaching methods:

Lectures supported by multimedia.

Form and terms of complete the course - requirements and assessment methods:

Examination

Basic Bibliography:

Additional Bibliography: